310 research outputs found

    The contribution of badgers to confirmed tuberculosis in cattle in high-incidence areas in England

    Get PDF
    The role of badgers in the transmission and maintenance of bovine tuberculosis (TB) in British cattle is widely debated as part of the wider discussions on whether badger culling and/or badger vaccination should play a role in the government’s strategy to eradicate cattle TB. The key source of information on the contribution from badgers within high-cattle-TB-incidence areas of England is the Randomised Badger Culling Trial (RBCT), with two analyses providing estimates of the average overall contribution of badgers to confirmed cattle TB in these areas. A dynamical model characterizing the association between the estimated prevalence of Mycobacterium bovis (the causative agent of bovine TB) among badgers culled in the initial RBCT proactive culls and the incidence among sympatric cattle herds prior to culling is used to estimate the average overall contribution of badgers to confirmed TB herd breakdowns among proactively culled areas. The resulting estimate based on all data (52%) has considerable uncertainty (bootstrap 95% confidence interval (CI): 9.1-100%). Separate analyses of experimental data indicated that the largest estimated reduction in confirmed cattle TB achieved inside the proactive culling areas was 54% (overdispersion-adjusted 95% CI: 38-66%), providing a lower bound for the average overall contribution of badgers to confirmed cattle TB. Thus, taking into account both results, the best estimate of the average overall contribution of badgers is roughly half, with 38% being a robustly estimated lower bound. However, the dynamical model also suggested that only 5.7% (bootstrap 95% CI: 0.9-25%) of the transmission to cattle herds is badger-to-cattle with the remainder of the average overall contribution from badgers being in the form of onward cattle-to-cattle transmission. These estimates, confirming that badgers do play a role in bovine TB transmission, inform debate even if they do not point to a single way forward

    The Duration of the Effects of Repeated Widespread Badger Culling on Cattle Tuberculosis Following the Cessation of Culling

    Get PDF
    Background: In the British Isles, control of cattle tuberculosis (TB) is hindered by persistent infection of wild badger (Meles meles) populations. A large-scale field trial—the Randomised Badger Culling Trial (RBCT)—previously showed that widespread badger culling produced modest reductions in cattle TB incidence during culling, which were offset by elevated TB risks for cattle on adjoining lands. Once culling was halted, beneficial effects inside culling areas increased, while detrimental effects on adjoining lands disappeared. However, a full assessment of the utility of badger culling requires information on the duration of culling effects. Methodology/Principal Findings: We monitored cattle TB incidence in and around RBCT areas after culling ended. We found that benefits inside culled areas declined over time, and were no longer detectable by three years post-culling. On adjoining lands, a trend suggesting beneficial effects immediately after the end of culling was insignificant, and disappeared after 18 months post-culling. From completion of the first cull to the loss of detectable effects (an average five-year culling period plus 2.5 years post-culling), cattle TB incidence was 28.7% lower (95% confidence interval [CI] 20.7 to 35.8% lower) inside ten 100 km2 culled areas than inside ten matched no-culling areas, and comparable (11.7% higher, 95% CI: 13.0% lower to 43.4% higher, p = 0.39) on lands #2 km outside culled and no-culling areas. The financial costs of culling an idealized 150 km2 area would exceed the savings achieved through reduced cattle TB, by factors of 2 to 3.5. Conclusions/Significance: Our findings show that the reductions in cattle TB incidence achieved by repeated badger culling were not sustained in the long term after culling ended and did not offset the financial costs of culling. These results, combined with evaluation of alternative culling methods, suggest that badger culling is unlikely to contribute effectively to the control of cattle TB in Britain

    Leaping through tree space: continuous phylogenetic inference for rooted and unrooted trees

    Full text link
    Phylogenetics is now fundamental in life sciences, providing insights into the earliest branches of life and the origins and spread of epidemics. However, finding suitable phylogenies from the vast space of possible trees remains challenging. To address this problem, for the first time, we perform both tree exploration and inference in a continuous space where the computation of gradients is possible. This continuous relaxation allows for major leaps across tree space in both rooted and unrooted trees, and is less susceptible to convergence to local minima. Our approach outperforms the current best methods for inference on unrooted trees and, in simulation, accurately infers the tree and root in ultrametric cases. The approach is effective in cases of empirical data with negligible amounts of data, which we demonstrate on the phylogeny of jawed vertebrates. Indeed, only a few genes with an ultrametric signal were generally sufficient for resolving the major lineages of vertebrate. With cubic-time complexity and efficient optimisation via automatic differentiation, our method presents an effective way forwards for exploring the most difficult, data-deficient phylogenetic questions.Comment: 13 pages, 4 figures, 14 supplementary pages, 2 supplementary figure

    Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs

    Get PDF
    A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease

    Comparison of machine learning methods for estimating case fatality ratios: an Ebola outbreak simulation study

    Get PDF
    Background Machine learning (ML) algorithms are now increasingly used in infectious disease epidemiology. Epidemiologists should understand how ML algorithms behave within the context of outbreak data where missingness of data is almost ubiquitous. Methods Using simulated data, we use a ML algorithmic framework to evaluate data imputation performance and the resulting case fatality ratio (CFR) estimates, focusing on the scale and type of data missingness (i.e., missing completely at random—MCAR, missing at random—MAR, or missing not at random—MNAR). Results Across ML methods, dataset sizes and proportions of training data used, the area under the receiver operating characteristic curve decreased by 7% (median, range: 1%–16%) when missingness was increased from 10% to 40%. Overall reduction in CFR bias for MAR across methods, proportion of missingness, outbreak size and proportion of training data was 0.5% (median, range: 0%–11%). Conclusion ML methods could reduce bias and increase the precision in CFR estimates at low levels of missingness. However, no method is robust to high percentages of missingness. Thus, a datacentric approach is recommended in outbreak settings—patient survival outcome data should be prioritised for collection and random-sample follow-ups should be implemented to ascertain missing outcomes

    An exact method for quantifying the reliability of end-of-epidemic declarations in real time.

    Get PDF
    Funder: Christ Church University of Oxford Junior Research FellowshipWe derive and validate a novel and analytic method for estimating the probability that an epidemic has been eliminated (i.e. that no future local cases will emerge) in real time. When this probability crosses 0.95 an outbreak can be declared over with 95% confidence. Our method is easy to compute, only requires knowledge of the incidence curve and the serial interval distribution, and evaluates the statistical lifetime of the outbreak of interest. Using this approach, we show how the time-varying under-reporting of infected cases will artificially inflate the inferred probability of elimination, leading to premature (false-positive) end-of-epidemic declarations. Contrastingly, we prove that incorrectly identifying imported cases as local will deceptively decrease this probability, resulting in delayed (false-negative) declarations. Failing to sustain intensive surveillance during the later phases of an epidemic can therefore substantially mislead policymakers on when it is safe to remove travel bans or relax quarantine and social distancing advisories. World Health Organisation guidelines recommend fixed (though disease-specific) waiting times for end-of-epidemic declarations that cannot accommodate these variations. Consequently, there is an unequivocal need for more active and specialised metrics for reliably identifying the conclusion of an epidemic

    Contrasting reservoirs for Schistosoma japonicum between marshland and hilly regions in Anhui, China--a two-year longitudinal parasitological survey.

    Get PDF
    Schistosoma japonicum remains highly endemic in many counties in China and has recently re-emerged, to a large extent, in previously controlled areas. To test the hypothesis that small rodents and less agriculturally important domestic animals such as dogs and cats may play an important role in the transmission and potential re-emergence of this disease, an annual investigation of S. japonicum among humans, domestic animals and rodents, combined with detailed surveys of the snail intermediate host, was performed across 3 marshland villages and 3 hilly villages in Anhui province of China over 2 consecutive years. The highest infection prevalence and intensity observed across all mammals was in rodents in the hilly region; while in the marshland, bovines were suspected as the main reservoirs. However, relatively high infection prevalence levels were also found in dogs and cats in both regions. Such results may have implications for the current human- and bovine-oriented control policy for this medically and veterinarily important disease, particularly within the hilly regions of mainland China

    Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression

    Get PDF
    Background Control of the world’s most important vector-borne viral disease, dengue, is a high priority. A lack of vaccines or effective vector control methods means that novel solutions to disease control are essential. The release of male insects carrying a dominant lethal (RIDL) is one such approach that could be employed to control Aedes aegypti. To maximise the potential of RIDL control, optimum release strategies for transgenic mosquitoes are needed. The use of field data to parameterise models allowing comparisons of the release of different life-stages is presented together with recommendations for effective long-term suppression of a wild Ae. aegypti population. Methods A compartmental, deterministic model was designed and fitted to data from large-scale pupal mark release recapture (MRR) field experiments to determine the dynamics of a pupal release. Pulsed releases of adults, pupae or a combination of the two were simulated. The relative ability of different release methods to suppress a simulated wild population was examined and methods to maintain long-term suppression of a population explored. Results The pupal model produced a good fit to field data from pupal MRR experiments. Simulations using this model indicated that adult-only releases outperform pupal-only or combined releases when releases are frequent. When releases were less frequent pupal-only or combined releases were a more effective method of distributing the insects. The rate at which pupae eclose and emerge from release devices had a large influence on the relative efficacy of pupal releases. The combined release approach allows long-term suppression to be maintained with smaller low-frequency releases than adult- or pupal-only release methods. Conclusions Maximising the public health benefits of RIDL-based vector control will involve optimising all stages of the control programme. The release strategy can profoundly affect the outcome of a control effort. Adult-only, pupal-only and combined releases all have relative advantages in certain situations. This study successfully integrates field data with mathematical models to provide insight into which release strategies are best suited to different scenarios. Recommendations on effective approaches to achieve long-term suppression of a wild population using combined releases of adults and pupae are provided

    Simple model for tuberculosis in cattle and badgers

    Get PDF
    As an aid to the study of bovine tuberculosis (TB), a simple model has been developed of an epidemic involving two species, cattle and badgers. Each species may infect the other. The proportion of animals affected is assumed relatively small so that the usual nonlinear aspects of epidemic theory are avoided. The model is used to study the long-run and transient effect on cattle of culling badgers and the effect of a period without routine testing for TB, such as occurred during the 2001 epidemic of foot-and-mouth disease in Great Britain. Finally, by examining the changes in cattle TB over the last 15 years, and with some other working assumptions, it is estimated that the net reproduction number of the epidemic is 1.1. The implications for controlling the disease are discussed
    • …
    corecore